3.2.13 \(\int \frac {1}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [113]

Optimal. Leaf size=71 \[ -\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} \sqrt {a} d}+\frac {i}{d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-1/2*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/d*2^(1/2)/a^(1/2)+I/d/(a+I*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {3560, 3561, 212} \begin {gather*} \frac {i}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} \sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-I)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*Sqrt[a]*d) + I/(d*Sqrt[a + I*a*Tan[c + d
*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3560

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a*((a + b*Tan[c + d*x])^n/(2*b*d*n)), x] +
Dist[1/(2*a), Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+i a \tan (c+d x)}} \, dx &=\frac {i}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \sqrt {a+i a \tan (c+d x)} \, dx}{2 a}\\ &=\frac {i}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} \sqrt {a} d}+\frac {i}{d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 84, normalized size = 1.18 \begin {gather*} \frac {i \left (\sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)} \sinh ^{-1}\left (e^{i (c+d x)}\right )\right )}{d \sqrt {1+e^{2 i (c+d x)}} \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(I*(Sqrt[1 + E^((2*I)*(c + d*x))] - E^(I*(c + d*x))*ArcSinh[E^(I*(c + d*x))]))/(d*Sqrt[1 + E^((2*I)*(c + d*x))
]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 59, normalized size = 0.83

method result size
derivativedivides \(\frac {2 i a \left (\frac {1}{2 a \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{4 a^{\frac {3}{2}}}\right )}{d}\) \(59\)
default \(\frac {2 i a \left (\frac {1}{2 a \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{4 a^{\frac {3}{2}}}\right )}{d}\) \(59\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*I/d*a*(1/2/a/(a+I*a*tan(d*x+c))^(1/2)-1/4/a^(3/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/
2)))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 81, normalized size = 1.14 \begin {gather*} \frac {i \, {\left (\sqrt {2} \sqrt {a} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, a}{\sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}}{4 \, a d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*I*(sqrt(2)*sqrt(a)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x
 + c) + a))) + 4*a/sqrt(I*a*tan(d*x + c) + a))/(a*d)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 238 vs. \(2 (52) = 104\).
time = 0.44, size = 238, normalized size = 3.35 \begin {gather*} \frac {{\left (-i \, \sqrt {2} a d \sqrt {\frac {1}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (4 \, {\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + i \, \sqrt {2} a d \sqrt {\frac {1}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-4 \, {\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-i \, e^{\left (2 i \, d x + 2 i \, c\right )} - i\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(-I*sqrt(2)*a*d*sqrt(1/(a*d^2))*e^(I*d*x + I*c)*log(4*((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt(a/(e^(2*I*d*x
+ 2*I*c) + 1))*sqrt(1/(a*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + I*sqrt(2)*a*d*sqrt(1/(a*d^2))*e^(I*d*x
 + I*c)*log(-4*((a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a*d^2)) - a*e^(I*d*x
 + I*c))*e^(-I*d*x - I*c)) - 2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-I*e^(2*I*d*x + 2*I*c) - I))*e^(-I*d
*x - I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {i a \tan {\left (c + d x \right )} + a}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/sqrt(I*a*tan(c + d*x) + a), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(I*a*tan(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [B]
time = 0.23, size = 60, normalized size = 0.85 \begin {gather*} \frac {1{}\mathrm {i}}{d\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{2\,\sqrt {-a}\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

1i/(d*(a + a*tan(c + d*x)*1i)^(1/2)) + (2^(1/2)*atan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1
i)/(2*(-a)^(1/2)*d)

________________________________________________________________________________________